REPRESENTATION THEORY OF FINITE GROUPS

100 Points

## Notes.

- (a) Leave sufficient gap between your answers to different questions. Preferably, begin each answer on a separate page.
- (b) Justify all your steps. Assume only those results that have been proved in class. All other steps should be justified.
  - (c)  $\mathbb{Z}$  = integers,  $\mathbb{Q}$  = rational numbers,  $\mathbb{R}$  = real numbers,  $\mathbb{C}$  = complex numbers.
  - (d) Generic notation: G is a group, k is a field, V is a G-module over k.
- 1. [5 points] Let  $A = (a_{ij})$  be an  $n \times n$  matrix over a field k such that A is strictly upper triangular, i.e.,  $a_{ij} = 0$  for  $i \geq j$ . Describe the eigenvalues of A and prove that A is diagonalizable iff A is the zero matrix. (Use elementary linear algebra only.)
- 2. [11 points] List all similarity classes of  $5 \times 5$  matrices A over  $\mathbb C$  such that A satisfies the following two conditions.
  - (a) The characteristic polynomial p(x) of A is  $(x+4)^5$ .
  - (b)  $(A+4I)^2 \neq 0$ .
- 3. [9 points] Give an example of a G-module V over a field k and a subspace  $W \subset V$  such that W is not a submodule of V.
- 4. [11 points] Let  $G = C_2 = \{1, \tau \mid \tau^2 = 1\}$  be the cyclic group of order 2. Consider the action of G on  $V = \mathbb{R}^3$  given by

$$\rho(\tau) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

Decompose V as a direct sum of irreducible G-modules.

- 5. [9 points] Give an example of a irreducible G-module V over k such that the dimension of V over k is greater than 1.
- 6. [9 points] Give an example of a G-module V and a submodule  $W \subset V$  such that W has no G complement, i.e., there is no submodule  $W' \subset V$  for which  $V = W \oplus W'$  holds.
  - 7. [7 points] Prove that  $\mathbb{Q} \otimes_{\mathbb{Z}} M = 0$  for any finite abelian group M.

- 8. [9 points] Let  $V = k^3$ . Give an example of an element in  $V \otimes_k V$  that is not a pure tensor, i.e., it is not of the form  $v \otimes v'$  for any  $v, v' \in V$ . Justify your answer.
- 9. [12 points] Let R be a commutative ring and M an R-module with generators  $\{m_i\}_{i\in I}$ . Expand the following products and express them as a sum of homogeneous terms of different degrees.
  - (i)  $x \otimes x \in T(M)$  where  $x = m_1 + (m_2 \otimes m_3) + (m_1 \otimes m_4 \otimes m_5) \in T(M)$ .
  - (ii)  $x \cdot x \in S(M)$  where  $x = m_1 + (m_2 \cdot m_3) + (m_1 \cdot m_4 \cdot m_5) \in S(M)$ .
  - (iii)  $x \wedge x \in \bigwedge(M)$  where  $x = m_1 + (m_2 \wedge m_3) + (m_1 \wedge m_4 \wedge m_5) \in \bigwedge(M)$ .
- 10. [18 points] Let  $G = S_3$  be the permutation group on 3 symbols and let H be the normal subgroup of order 3. Find a one-dimensional H-module  $\mathbb{L}$  (over  $\mathbb{C}$ ) such that the induced module  $\operatorname{Ind}_H^G(\mathbb{L})$  is isomorphic to the standard module for  $S_3$ . (You must provide the isomorphism also.)